Search results

1 – 10 of 188
Article
Publication date: 13 November 2017

Chandra B. Khatri and Satish C. Sharma

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal…

Abstract

Purpose

The aim of the present paper is to study the combined influence of textured surface and micropolar lubricant behaviour on the performance of two-lobe hole-entry hybrid journal bearing system. The bearing performance parameters of the textured circular/two-lobe hole-entry hybrid journal bearing system have been computed against the constant vertical external load supported by the bearing.

Design/methodology/approach

In this work, Eringen’s micropolar fluid theory has been used to derive the governing Reynolds equation. The consequent solution of the governing Reynolds equation has been obtained by using finite element method (FEM) numerical technique.

Findings

The present study indicates that the use of the textured surface, two-lobe profile of bearing and micropolar lubricant, significantly enhances the bearing performance as compared to non-textured circular journal bearing.

Originality/value

The present study concerning the influence of surface texturing on the behaviour of the two-lobe hole-entry hybrid journal bearing lubricated with micropolar lubricant is original. The theoretically simulated results of the present study will be useful to design an efficient journal bearing system.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Saurabh Kumar Yadav, Arvind Kumar Rajput, Nathi Ram and Satish Chandra Sharma

This study aims to analyze the dynamic performance of aerostatic thrust bearing for different geometries of recess. Different geometries of recess of equal recess area, i.e…

Abstract

Purpose

This study aims to analyze the dynamic performance of aerostatic thrust bearing for different geometries of recess. Different geometries of recess of equal recess area, i.e. circular, elliptical, rectangular and annular, have been considered in analysis. The work also analyzes the influence of tilt angle on the performance of thrust bearing. To compute the unknown pressure field, the Reynolds equation governing the flow of compressible lubricant (air) has been solved using finite element formulation. Further, separate finite element formulations have been carried out to compute fluid film stiffness and damping coefficients directly. This method provides quick computation of stiffness and damping coefficients of aerostatic thrust bearing than the usual approach.

Design/methodology/approach

As the Reynolds equation governing the flow of compressible lubricant is nonlinear partial differential equation, the computation of the stiffness and damping coefficient follows an iterative procedure. It requires a lot of computational energy. Therefore, in the present work, a novel technique based on finite element formulation is suggested to compute air film stiffness and damping coefficient in aerostatic thrust bearing.

Findings

A novel technique based on finite element formulation is illustrated to simulate the performance of tilted pad aerostatic thrust bearing. On the basis of simulated results, following key conclusions may be drawn. The static and dynamic performance of a circular aerostatic tilted thrust pad bearing is significantly affected with a change in the value of tilt parameter and the shape of the recess.

Research limitations/implications

Implications are as follows: direct computation of air film damping coefficient is performed without perturbation method in finite element method (FEM); influence of tilt on aerostatic thrust bearing is studied; influence of recess shape on aerostatic thrust bearing is observed; and finite element formulation of aerostatic thrust bearing is performed.

Originality/value

The present work will be quite useful for bearing designer and academicians.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 September 2010

Satish Jain, Satish Sharma, J. Sharana Basavaraja and Prashant Kushare

In recent years, researchers have focused a great deal of attention on multirecess hybrid journal bearing systems. The non‐circular journal bearings are widely used in industry on…

Abstract

Purpose

In recent years, researchers have focused a great deal of attention on multirecess hybrid journal bearing systems. The non‐circular journal bearings are widely used in industry on account of their better stability, simplicity, efficiency and low cost. The purpose of this paper is to present a theoretical investigation into the performance of a two‐lobe multirecess hybrid journal bearing system.

Design/methodology/approach

The Reynold's equation governing the lubricant flow in the clearance space between the journal and bearing together with restrictor flow equations has been solved using finite element method. The bearing static and dynamic performance characteristics have been presented for the various values of the offset factors (0.75, 1, 1.25 and 1.50) for the hybrid mode of operation of the journal bearing system compensated by capillary and orifice restrictors for the commonly used bearing operating and geometric parameters. The offset of the journal has been accounted for by defining a non‐dimensional factor called offset factor delta.

Findings

The numerically simulated results indicate that a two‐lobe four recessed hybrid journal bearing provides a better performance than the corresponding similar circular recessed journal bearing system. The study further reveals that in order to get an improved performance of a two‐lobe four recessed journal bearing, a proper selection of bearing offset factors along with type of restrictor (capillary or orifice) is essential.

Originality/value

The results presented in this paper are useful for bearing designers.

Details

Industrial Lubrication and Tribology, vol. 62 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 9 December 2020

Vivek Kumar, Vatsalkumar Ashokkumar Shah, Simran Jeet Singh, Kuldeep Narwat and Satish C. Sharma

The porous bearings are commonly used in slider thrust bearings owing to their self-lubricating properties and cost effectiveness as compared to conventional hydrodynamic…

Abstract

Purpose

The porous bearings are commonly used in slider thrust bearings owing to their self-lubricating properties and cost effectiveness as compared to conventional hydrodynamic bearings. The purpose of this paper is to numerically investigate usefulness of porous layer in hydrostatic thrust bearing operating with magnetic fluid. The effect of magnetic field and permeability has been analysed on steady-state (film pressure, film reaction and lubricant flow rate) and rotor-dynamic (stiffness and damping) parameters of bearing.

Design/methodology/approach

Finite element approach is used to obtain numerical solution of flow governing equations (Magneto-hydrodynamics Reynolds equation, Darcy law and capillary equation) for computing abovementioned performance indices. Finite element method formulation converts elliptical Reynolds equation into set of algebraic equation that are solved using Gauss–Seidel method.

Findings

It has been reported that porosity has limited but adverse effects on performance parameters of bearing. The adverse effects of porosity can be minimized by using a circular pocket for achieving better steady-state response and an annular/elliptical pocket, for having better rotor-dynamic response. The use of magnetic fluid is found to be substantially enhancing the fluid film reaction (53%) and damping parameters (55%).

Practical implications

The present work recommends use of circular pocket for achieving better steady-state performance indices. However, annular and elliptical pockets should be preferred, when design criteria for the bearing are better rotor-dynamic performance.

Originality/value

This study deals with influence of magnetic fluid, porosity and pocket shape on rotor-dynamic performance of externally pressurized thrust bearing.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0289/

Details

Industrial Lubrication and Tribology, vol. 73 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 June 2019

Vivek Kumar and Satish C. Sharma

This paper aims to numerically investigate the influence of magnetic field and recess configurations on performance of hydrostatic thrust bearing. Electrically conducting fluid is…

Abstract

Purpose

This paper aims to numerically investigate the influence of magnetic field and recess configurations on performance of hydrostatic thrust bearing. Electrically conducting fluid is supplied to bearing, operating in external magnetic field. Influences of recess geometric shapes (circular, rectangular, elliptical and triangular) and restrictor (capillary and orifice) are numerically examined on stead-state and dynamic performance characteristics of bearing.

Design/methodology/approach

Numerical simulation of hydrostatic thrust bearing has been performed using finite element (FE) method based on Galerkin’s technique. An iterative source code based on FE approach, Gauss–Siedel and Newton–Raphson method is used to compute steady-state and dynamic performance indices of bearings.

Findings

The presence of magnetic field is observed to be enhancing load-carrying capacity and damping coefficient of bearings. The effect is observed to be more pronounced at low value of Hartmann number, because of the saturation effect observed at higher values of Hartmann number. The enhancement in abovementioned performance indices is observed to be highly dependent on geometry of recess and restrictor.

Research limitations/implications

This study presents a FE-based approach to numerically simulate a hydrostatic thrust bearing. It will help bearing designers and academician in selecting an appropriate recess shape, restrictor and strength of magnetic field, for obtaining optimum performance from hydrostatic thrust bearing.

Originality/value

The present investigation provides a coupled solution of modified Reynolds equation and restrictor equation, which is essential for accurately predicting the performance of hydrostatic thrust bearings.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 August 2018

Krishnkant Sahu and Satish C. Sharma

This study aims to deal with the performance of symmetric/asymmetric slot entry hybrid journal bearing system considering the effect of three dimensional irregularities in the…

Abstract

Purpose

This study aims to deal with the performance of symmetric/asymmetric slot entry hybrid journal bearing system considering the effect of three dimensional irregularities in the analysis.

Design/methodology/approach

The asperity profile of three-dimensional irregularities has been modeled in both circumferential and axial directions. To compute the bearing performance characteristics parameter, finite element formulation of governing Reynolds equation has been derived using Galerkin’s technique.

Findings

Based on the numerically simulated results, it has been observed that the three-dimensional irregularities enhance the value of minimum fluid film thickness (h̄min), lubricant flow (Q̄) and fluid film damping coefficients (C̄11,C̄22) approximately by order of magnitude of 24-26, 43-51 and 18-66 per cent, respectively, for the case of asymmetric slot entry configuration. Whereas, the values of fluid film stiffness coefficients (S̄11,S̄22) and threshold speed (ω̄th) reduces approximately by order of 1-6 and 0-3 per cent, respectively, for the case of symmetric slot entry configuration.

Originality/value

The present paper describes that the influence of three-dimensional irregularities on bearing surface on the performance of slot entry hybrid journal bearing is original in literature gaps. The numerically simulated results presented in this study are expected to be quite useful to the bearing designers.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 October 2019

Vivek Kumar, Satish C. Sharma and Kuldeep Narwat

Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are…

Abstract

Purpose

Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are carried out to examine the influence of surface texture on performance of hybrid thrust bearing system. This paper aims to determine optimum attributes of micro-grooves for thrust bearing operating in hybrid mode.

Design/methodology/approach

An iterative source code based on finite element formulation of Reynolds equation has been developed to numerically simulate flow of lubricant through the bearing. Mass-conserving algorithm based on Jakobsson–Floberg–Olsson (JFO) condition has been used to numerically capture cavitation phenomenon in the bearing. Gauss Siedel method has been used to obtain steady state performance parameters of the bearings.

Findings

A parametric study has been performed to improve the load supporting capacity of the bearing by optimizing micro-groove attributes and configuration. It is noticed that use of full-section micro-groove is beneficial in improving the efficiency of bearing by enhancing the fluid film reaction and reducing the film frictional power losses.

Originality/value

This study is helpful in examining the usefulness of micro-groove textured surfaces in hybrid thrust bearing applications.

Details

Industrial Lubrication and Tribology, vol. 72 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 November 2020

Savva Shanaev, Nikita Shimkus, Binam Ghimire and Satish Sharma

The purpose of this paper is to study LEGO sets as a potential alternative asset class. An exhaustive sample of 10,588 sets is used to generate inferences regarding long-term LEGO…

1195

Abstract

Purpose

The purpose of this paper is to study LEGO sets as a potential alternative asset class. An exhaustive sample of 10,588 sets is used to generate inferences regarding long-term LEGO performance, its diversification benefits and return determinants.

Design/methodology/approach

LEGO set performance is studied in terms of equal- and value-weighted portfolios, sorts based on set characteristics and cross-sectional regressions.

Findings

Over 1966–2018, LEGO value-weighted index accounted for survivorship bias enjoys 1.20% inflation-adjusted return per annum, well below 5.54% for equities. However, the defensive properties of LEGO are considerable, as including 5%–25% of LEGO in a diversified portfolio is beneficial for investors with varying levels of risk aversion. LEGO secondary market is relatively internationalised, with investors from larger economies, countries with higher per capita incomes and less income inequality are shown to trade LEGO more actively.

Practical implications

LEGO investors derive non-pecuniary utility that is separable from their risk-return profile. LEGO is not exposed to any of the Fama-French factors, however, set-specific size and value effects are also well-pronounced on the LEGO market, with smaller sets and sets with lower price-to-piece ratio exhibiting higher yields. Older sets are also enjoying higher returns, demonstrating a liquidity effect.

Originality/value

This is the first study to investigate the investment properties of LEGO as an alternative asset class from micro- and macro-financial perspectives that overcomes many survivorship bias limitations prevalent in earlier research. LEGO trading is shown to be an important source of valuable data to enable original robustness checks for prominent theoretical concepts from asset pricing and behavioural finance literature.

Details

The Journal of Risk Finance, vol. 21 no. 5
Type: Research Article
ISSN: 1526-5943

Keywords

Article
Publication date: 17 August 2010

Satish Sharma, Satish Jain, J. Sharana Basavaraja and Neeraj Sharma

Hole‐entry hybrid journal bearings are widely used in many applications owing to their favourable characteristics. Ever increasing technological developments demand much improved…

Abstract

Purpose

Hole‐entry hybrid journal bearings are widely used in many applications owing to their favourable characteristics. Ever increasing technological developments demand much improved performance from these class of bearings operating under the most stringent, exact and precise conditions. Therefore, it becomes imperative that the hole‐entry journal bearings be designed on the basis of more accurately predicted bearing characteristics data. The purpose of this paper is to describe a theoretical study to demonstrate the combined influence of the effect of pocket size at the outlet of supply holes and the journal misalignment on the performance of an orifice compensated hole‐entry hybrid journal bearing system.

Design/methodology/approach

Finite element method is used to solve the Reynolds equation governing the flow of an incompressible lubricant in the clearance space between the journal and bearing together with equation of flow through an orifice. The journal misalignment has been accounted for by defining a pair of misalignment parameters sigma and delta. The effect of pocket size at the outlet of supply holes has been accounted by defining a non‐dimensional parameter which is function of diameter of pocket and journal diameter.

Findings

The results presented in this paper indicate that the effect of journal misalignment is, in general, to cause a reduction in bearing dynamic characteristics parameters whereas the effect of pocket size is to slightly compensate this loss. Performance of a two lobe four recessed journal bearing, a proper selection of bearing offset factor along with type of restrictor (capillary or orifice) is essential.

Originality/value

This paper presents valuable data relating to hole‐entry hybrid journal bearings useful for bearing designers.

Details

Industrial Lubrication and Tribology, vol. 62 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 April 2012

Satish C. Sharma, Vikas M. Phalle and S.C. Jain

Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a…

Abstract

Purpose

Noncircular journal bearings are used in industry because of their simplicity, efficiency and low cost. During the life time of a machine, these are required to be operated over a number of years and are submitted to several stops and starts. As a result, the bush becomes progressively worn out and the bearing performance changes. The purpose of this paper is to study theoretically the influence of wear on the performance of a non‐circular 2‐lobe four‐pocket multirecess hybrid journal bearing system.

Design/methodology/approach

The Reynolds equation governing the flow of lubricant in the clearance space of a non‐circular 2‐lobe multirecess worn hybrid journal bearing system has been solved using FEM along with appropriate boundary conditions. The defects caused by wear are centered on the load line and range from 10 per cent to 50 per cent of the bearing radial clearance.

Findings

The numerically simulated results based on a Newtonian lubricant and the steady state flow field system have been presented in terms of maximum fluid film pressure, minimum fluid film thickness, lubricant flow rate, direct fluid film stiffness and damping coefficients and stability threshold speed margin. The paper demonstrates that, for the bearing configurations studied, the bearing behavior is clearly affected by wear. The numerically simulated results indicate that for an offset factor of δ=1.2, the value of min reduces by 21.21 per cent at δ¯w=0.5.

Originality/value

The presented results have valuable data in case of 2‐lobe four pocket hybrid journal bearing compensated with constant flow valve restrictor. The paper outcomes are sure to be of interest for researchers and useful for bearing designers.

Details

Industrial Lubrication and Tribology, vol. 64 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 188